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ABSTRACT

”An IoT and Supervised Learning-Based Sensor-less Technique for Panel Level Solar

Photovoltaic Array Fault Diagnosis” introduces an innovative fault diagnosis methodol-

ogy for Solar Photovoltaic (SPV) arrays, featuring a sensor-less electronic circuit with

a bipolar junction transistor (BJT) and Zener diode for fault detection. Integrated

with an IoT-based web application for precise fault localization at the panel level, the

methodology relies on supervised learning techniques, such as Support Vector Machine

(SVM) and Logistic Regression (LR), for fault classification. Demonstrating poten-

tial cost-effectiveness and data efficiency, the methodology’s simulated accuracies in

fault detection and classification appear promising. Primary simulations encompass-

ing LTspice-based FDEC implementation, MATLAB/SIMULINK data collection, fault

characteristic analysis, Python-based Fault Monitoring and Data Acquisition System

(FMDAS) deployment, and machine learning (ML) algorithms for fault classification

yield encouraging outcomes. While pending laboratory-scale experiments, these pre-

liminary simulated results align with envisioned objectives, offering a promising path

for SPV array fault diagnosis. The approach holds potential in addressing critical chal-

lenges within SPV arrays, presenting a prospective stride in solar energy technology.

Further validation via physical experiments is necessary to substantiate these findings

and adapt the methodology for practical application in real-world scenarios, aligning

with the dynamic needs of modern microgrids and operating environments.
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CHAPTER 1

INTRODUCTION

The performance of solar photovoltaic (SPV) systems is critical for meeting escalating

energy demands sustainably. Yet, SPV arrays are vulnerable to faults that detrimen-

tally affect their efficiency and lifespan. Conventional fault detection methods struggle

due to intricate environmental conditions and the nonlinear behavior of solar cells.

Moreover, prevalent learning-based approaches demand copious data and costly sen-

sors, limiting practicality for many SPV systems.

This article introduces an innovative fault diagnosis methodology revolutionizing SPV

arrays. It not only detects but also precisely localizes and categorizes faults. What

sets this approach apart is its fusion of a sensor-less electronic circuit, an IoT-driven

monitoring system, and a sophisticated supervised learning model. This unique amal-

gamation enables advanced fault diagnosis and management within solar photovoltaic

systems.

At the core of this methodology lies the Fault Detection Electronic Circuit (FDEC),

utilizing components like a bipolar junction transistor (BJT) and Zener diode. This

circuit adeptly identifies various faults, including Line to Line (LL), Line to Ground

(LG), Open Circuit (OC), and Partial Shading Conditions (PSCs).

To circumvent heavy reliance on labeled data in traditional supervised learning, a

novel supervised learning approach is introduced. This method efficiently classifies

faults even with limited labeled data availability. By leveraging strategically designed

datasets, it optimizes fault classification accuracy.

The machine learning methodology hinges on the Support Vector Machine and Lo-

gistic Regression (SVM-LR) model. This fusion excels in fault classification, providing

precision in identifying and categorizing faults within SPV arrays. The SVM and

1
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logistic regression collaboration significantly contributes to fault diagnosis, reducing

dependence on labeled datasets.

Critical to this methodology is its independence from excessive data and costly sensors.

The IoT-based Fault Monitoring and Data Acquisition System (FMDAS) integral to

this setup oversees individual solar panels for fault localization while minimizing re-

dundant data transmission. Selective data relay to the server upon anomaly detection

streamlines operations, conserving resources.

1.1 Research Objectives

The objective is to develop an innovative fault diagnosis methodology for Solar PV sys-

tems, integrating sensor-less fault detection, IoT-based monitoring, and machine learn-

ing models for precise fault localization and classification. The aim is to overcome lim-

itations in existing fault diagnosis approaches, optimizing accuracy, cost-effectiveness,

and sustainability in SPV array fault detection.

1.2 Overview of the Thesis

Chapter 1 sets the stage, outlining the scope and significance of fault diagnosis in Solar

PV systems.

Chapter 2 delves into existing research and methodologies related to Solar PV sys-

tem fault diagnosis.

Chapter 3 introduces Solar PV systems, emphasizing the need for fault monitoring

and detailing various fault types.

Chapter 4 explores fault detection methods and details the design of the Fault De-

tection Electronic Circuit (FDEC).

Chapter 5 presents outcomes from LTspice implementation, IoT-based FMDAS, dataset

creation, and machine learning model comparisons.

Chapter 6 summarizes key findings, implications, and future directions for fault di-

agnosis in Solar PV systems.

Department of Electrical and Electronics Engineering, M.A.C.E 2



CHAPTER 2

LITERATURE REVIEW

Mohammed Khorshed et.al[1] discuss faults in photovoltaic (PV) arrays, such as ground

faults, line-to-line faults, and arc faults, can lead to catastrophic failures. While these

incidents have been relatively infrequent, events like the fires in Bakersfield, CA, USA,

on April 5, 2009, and in Mount Holly, NC, USA, on April 16, 2011, underscore the

necessity for enhancements in fault detection, mitigation techniques, and updates to

existing codes and standards. This examination delves into how faults impact the func-

tioning of PV arrays and pinpoints the constraints of current detection and mitigation

approaches.

Hariharan et.al[2] discuss anomalies like faults and partial shading can diminish the

maximum power a photovoltaic (PV) array can produce. Detecting these issues is cru-

cial for enhancing the efficiency and reliability of the system. Traditional protection

mechanisms often fall short in identifying faults during cloudy or low irradiance situ-

ations, potentially leading to safety concerns and fire risks in PV setups. This study

introduces a method that utilizes measurements of array voltage, array current, and

irradiance to detect faults and partial shading across all irradiation scenarios. The pro-

posed method categorizes the PV array’s status into three scenarios: normal operation,

partial shading, and faults.

Hu Yihua et.al[3] explores that PV stations worldwide harness solar energy through

photovoltaic arrays, but minimizing costs and ensuring efficient operation is crucial.

Early fault detection has become increasingly pivotal, prompting the development of

a fault diagnosis technique analyzing terminal characteristics of faulty PV strings and

arrays. The technique divides the terminal current-voltage curve of a faulty PV array

into high-voltage and low-voltage sections for diagnosis. It involves analyzing work-

ing points of healthy string modules and both healthy and faulty modules within an

unhealthy string in each section, enabling precise identification of faulty PV modules.

3
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This fault information is vital for tasks like maximum power point tracking and array

reconfiguration. Additionally, optimizing voltage sensor placement can reduce the need

for string current sensors and decrease the number of voltage sensors required.

K. Yurtseven et.al[4] presents an innovative approach to fault detection in photovoltaic

(PV) systems. The proposed method relies on mapping the inherent characteristics of

the PV plant site, offering a simple and practical sensorless solution. By leveraging the

unique features of the PV system, the authors aim to detect faults efficiently. The paper

likely discusses the methodology, results, and practical implications of this approach,

providing valuable insights for enhancing the reliability and performance of PV systems.

Yi Zhehan et.al[5] introduces a method to detect DC side short-circuit faults in photo-

voltaic (PV) arrays comprising multiple PV panels interconnected in a series/parallel

setup. These faults are challenging to identify, especially under low irradiance condi-

tions and when a maximum power point tracking algorithm is active. Left undetected,

such faults can significantly reduce solar system output, harm the panels, and pose fire

risks. The proposed detection scheme relies on a pattern recognition strategy utilizing

multiresolution signal decomposition to extract relevant features. These features are

then used by a fuzzy inference system to determine fault occurrences. Through case

studies involving simulations and experiments, the effectiveness and reliability of this

approach in detecting faults in PV arrays are demonstrated.

Li Kui et.al[6] discusses a novel approach to tackle the challenge of detecting and

isolating arc faults in DC microgrids and photovoltaic systems. By utilizing a planar

location method requiring only two detection points, the system forms a horizontal

triangle between an antenna array and the fault source, capitalizing on the relatively

smaller height compared to the horizontal dimension of these systems. Signal pulses are

isolated using cross-correlation techniques, and a combination of neural networks (NN)

and received signal strength indicators (RSSIs) helps estimate the arc fault distance.

Recognizing the limitation of data from dual detection points for NN training, a data-

augmented NN (DANN) technique is introduced to bolster accuracy and robustness in

distance estimation

Department of Electrical and Electronics Engineering, M.A.C.E 4



CHAPTER 3

SOLAR PV SYSTEM

3.1 Introduction

A solar PV (photovoltaic) system is a renewable energy technology that converts sun-

light into electricity. It consists of solar panels made up of numerous solar cells, which

capture photons from the sun and generate direct current (DC) electricity. An inverter

then converts this DC power into alternating current (AC) electricity, suitable for use in

homes or businesses. The generated electricity can either be consumed on-site, stored

in batteries for later use, or fed back into the grid, often through net metering arrange-

ments, allowing the system owner to earn credits or financial incentives. Solar PV

systems are environmentally friendly, reducing greenhouse gas emissions and reliance

on fossil fuels while contributing to a more sustainable and resilient energy future.

3.2 Need for Fault Monitoring

Fault monitoring in solar photovoltaic (PV) systems is essential for ensuring the reliable

and efficient operation of solar power installations. Solar PV systems are exposed to

various environmental stressors, including temperature fluctuations, dust and debris,

and potential electrical and mechanical faults, which can significantly impact their

performance. Detecting and addressing these faults in a timely manner is crucial to

maximize energy production, reduce downtime, and extend the lifespan of the equip-

ment. Fault monitoring systems employ advanced technologies such as remote sensing,

data analytics, and automated alerts to continuously assess the health of the solar PV

system. They can identify issues like panel degradation, inverter malfunctions, shading,

and electrical wiring problems. By proactively identifying and mitigating these faults,

solar PV owners and operators can minimize energy losses, lower maintenance costs,

and ensure a stable power supply, contributing to a more sustainable and reliable en-
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ergy source. Additionally, fault monitoring systems play a critical role in enhancing the

safety of the system by identifying potential hazards and enabling prompt corrective

actions, thereby reducing the risk of electrical fires and other safety concerns associated

with solar PV installations.

3.3 Types of Faults in PV Systems

Within the domain of Solar Photovoltaic (SPV) modules, a spectrum of faults can arise,

causing disruptions in the smooth functioning of these systems. These faults present a

variety of abnormalities that impact the operational efficiency and effectiveness of both

individual solar panels and the overall array. Common manifestations of faults in SPV

modules are diverse, encompassing:

Figure 3.1: SPV Characteristics of Healthy Panel.

3.3.1 Line-to-Line Fault

A line-to-line fault in a solar PV system occurs when two conductors (wires) carrying

electrical current come into direct contact with each other. This type of fault can lead

to a short circuit, resulting in a surge of current that can damage components such as

inverters and pose safety risks. It can be caused by physical damage to wiring or faulty

connections.

Department of Electrical and Electronics Engineering, M.A.C.E 6
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Figure 3.2: SPV Different Associated Faults: Line-to-Line (LL) fault.

The provided graph (Fig. 3.2) illustrates the behavior of a solar panel system af-

fected by a line-to-line (LL) fault. In this scenario, two wires within the solar panel

system come into contact, resulting in a short circuit that diminishes both the voltage

and power output. The graph (Fig. 3.2) consists of two distinct graphs portraying the

relationship between current and voltage, as well as power and voltage.

The graph (Fig. 3.2) depicting current and voltage displays how the current (mea-

sured in A) varies in response to changes in the voltage (measured in V) across the

solar panel system experiencing an LL fault. It showcases an I-V curve represented by

a blue line. This curve begins at a point of high current and low voltage, eventually

trailing off to a point of low current and high voltage. This particular curve shape sig-

nifies that the solar panel system encounters reduced resistance and diminished output

voltage due to the LL fault. Notably, two red circles mark intersections on this I-V

curve, denoting the short circuit current (ISC) and the open circuit voltage (VOC).

ISC stands as the maximum current achievable when the voltage hits zero, while VOC

represents the maximum voltage when the current is at zero. Both ISC and VOC are

notably lower than their usual values due to the presence of the LL fault.

Meanwhile, the power and voltage graph showcase the relationship between power

(measured in MW) and voltage (measured in V) in the solar panel system with an

LL fault. This graph (Fig. 3.2) illustrates a P-V curve delineated by a blue line that

Department of Electrical and Electronics Engineering, M.A.C.E 7
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begins at zero, ascends to reach a maximum point, and subsequently descends back to

zero. The apex of this curve identifies the maximum power point (MPP), indicating the

optimal operational point for the solar panel system. Additionally, a red circle marks

the intersection on this P-V curve, representing the MPP of the solar panel system

affected by the LL fault. Notably, this MPP registers lower than in normal operating

conditions due to the impact of the LL fault.

3.3.2 Line-to-Ground Fault

A line-to-ground fault, also known as a ground fault, happens when one of the conduc-

tors in a PV system comes into contact with the ground or a conductive surface. This

type of fault can lead to electrical leakage, posing a risk of electric shock and system

under performance. Ground faults are typically detected and mitigated using ground

fault protection devices and proper grounding systems.

Figure 3.3: SPV Different Associated Faults: Line-to-Ground (LG) fault.

The graph (Fig. 3.3) depicts the behavior of a solar panel system experiencing a

line-to-ground (LG) fault, a situation where one of the wires in the solar panel setup

comes into contact with the ground. This contact causes a leakage of current and sub-

sequently results in a reduction in voltage within the system. The visual includes two

distinct graphs showcasing the characteristics of this fault.

Department of Electrical and Electronics Engineering, M.A.C.E 8
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The first graph illustrates the relationship between the current (measured in Am-

peres) and voltage (measured in Volts) of the solar panel system. It displays a blue

line known as the I-V curve, tracing a path from high current and low voltage to low

current and high voltage. This curve’s shape signifies that the solar panel system is

experiencing both low resistance and low output voltage, directly attributed to the line-

to-ground fault. Additionally, a marked data point, located at coordinates (38.9052,

16.3776) on the I-V curve, signifies the operational point of the solar panel system

under this fault condition.

The second graph portrays the relationship between the power output (measured

in Megawatts) and the voltage of the solar panel system. It exhibits a red line, referred

to as the P-V curve, which rises from zero to a maximum point before dropping back

to zero. The highest point on this curve represents the maximum power point (MPP),

indicating the optimal operating point of the solar panel system. Similarly, a marked

data point, aligning with the coordinates (38.9052, 23.0909) on the P-V curve, mirrors

the previous data point from the I-V curve. This data point reflects the power output

of the solar panel system during the line-to-ground fault, showcasing a lower power

output compared to the standard operation due to this fault.

3.3.3 Open Circuit Fault

An open circuit fault in a solar PV system occurs when there is a break or disconnec-

tion in the electrical circuit, preventing the flow of current. This fault can result from

damaged or disconnected wiring, loose connections, or faulty components, leading to a

significant decrease in energy production. Open circuit faults need to be identified and

repaired to restore the system’s functionality.

The graph (Fig. 3.4) illustrates the effects of an open circuit fault in a solar pho-

tovoltaic (SPV) system. Such a fault occurs when there’s a break or gap in the wiring

of the SPV system, leading to a loss of current and power. The image consists of

two graphs: one depicting the relationship between current and voltage, and the other

showcasing power against voltage.

In the current and voltage graph, there’s a blue line representing the I-V curve. It

starts at a point with high current and low voltage, ending at zero current and high

voltage. This curve shape indicates that the SPV system exhibits high resistance and

produces a high output voltage due to the open circuit fault. The graph marks a point

labeled ”Y 16.26” on the I-V curve, representing the system’s operating point under the

Department of Electrical and Electronics Engineering, M.A.C.E 9
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Figure 3.4: SPV Different Associated Faults: Open Circuit (OC) fault.

fault condition, known as the open circuit voltage (VOC). VOC denotes the maximum

voltage the SPV system can generate when the current is zero. It’s notably higher than

the normal case due to the open circuit fault.

In the power and voltage graph, a green line represents the P-V curve. It starts at

zero, reaches a maximum point, then drops back to zero. The peak of this curve marks

the maximum power point (MPP), which signifies the optimal operating point of the

SPV system. The graph also indicates a point labeled ”Y 1198.23” on the P-V curve,

representing the power output of the SPV system under the fault condition, which is

the MPP. However, the MPP under the open circuit fault condition is lower compared

to the normal case, reflecting the impact of the fault on the SPV system’s power output.

3.3.4 Short Circuit Fault

A short circuit fault in a solar PV system happens when there’s an unintended con-

nection between two points in the electrical circuit with low resistance. This fault can

occur due to damaged insulation, loose wiring, or faulty components, causing an exces-

sive flow of current. Short circuit faults pose risks like overheating, equipment damage,

and potential fire hazards. Identifying and fixing these faults promptly is crucial to

ensure system safety and efficiency.

Department of Electrical and Electronics Engineering, M.A.C.E 10
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Figure 3.5: SPV Different Associated Faults: Open Circuit (OC) fault.

The graph (Fig. 3.5) presents the characteristics of a solar panel system affected by

a short circuit (SC) fault. A short circuit fault occurs when current travels through an

unintended path, resulting in a decrease in both voltage and power output. The image

contains two graphs illustrating these effects.

The first graph, depicting current and voltage, showcases the relationship between

the current (A) and voltage (V) within the solar panel system. This graph features

a linear line, known as the I-V curve, starting from a high current and low voltage

point and ending at a low current and high voltage point. This specific curve shape

signifies the system’s low resistance and reduced output voltage due to the short circuit

fault. Additionally, marked data points on the I-V curve, such as (73.26, 16.3641) and

P-V Curve (73.26, 1198.83), represent the system’s operational points under varying

conditions.

The second graph, demonstrating power and voltage, displays the correlation be-

tween power (MW) and voltage (V) in the solar panel system. Calculated by multiply-

ing current and voltage, the power is illustrated via a parabolic curve called the P-V

curve. This curve initiates from zero, reaches a peak indicating the maximum power

point (MPP), and then descends back to zero. Similar to the I-V curve, the P-V curve

also showcases the same two marked data points, denoting the power output of the

system under different conditions. Notably, due to the short circuit fault, the power

output is lower compared to the normal operating condition.

Department of Electrical and Electronics Engineering, M.A.C.E 11
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3.3.5 Partial Shading Condition

Partial shading in a solar PV system occurs when some of the solar panels are shaded

while others are exposed to sunlight. This condition can significantly reduce the overall

system’s energy output due to the mismatch in power production between shaded and

unshaded panels. In such scenarios, bypass diodes and maximum power point tracking

(MPPT) algorithms in inverters are used to mitigate the effects of shading and optimize

energy generation by managing the voltage and current levels in the system.

Figure 3.6: SPV Different Associated Faults: Partial Shading Conditions.

This graph (Fig. 3.6) depicts the behavior of a solar panel when subjected to par-

tial shading conditions, where certain areas of the panel are obstructed from receiving

sunlight. This obstruction results in decreased power output and efficiency of the solar

panel. The graph comprises two graphs illustrating the relationship between current

and voltage, as well as power and voltage.

The current and voltage graph portrays fluctuations in current (A) concerning the

voltage (V) of the solar panel amidst partial shading conditions. The graph exhibits

a blue curve representing thebI-V curve. Unlike the standard smooth and steep I-V

curve, the partial shading scenario introduces multiple peaks and valleys, known as lo-

cal maxima and minima. These irregularities are consequences of current and voltage

Department of Electrical and Electronics Engineering, M.A.C.E 12
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mismatches among the interconnected solar cells. The highest point on the I-V curve,

termed the global maximum, signifies the optimal operational point of the solar panel

under partial shading. An orange marker at (75.6576, 6.7376) highlights the operating

point of the solar panel within these conditions.

The power and voltage graph showcases the relationship between power (W) and

voltage (V) of the solar panel during partial shading. The blue curve, referred to as

the P-V curve, starts from zero, reaches a peak, and then diminishes back to zero. Un-

like the typical parabolic and symmetrical P-V curve, partial shading causes multiple

peaks and valleys, aligning with the local maxima and minima on the I-V curve. The

highest point on the P-V curve, known as the global maximum power point (GMPP),

signifies the optimal power output of the solar panel under partial shading. An orange

marker at (75.6576, 508.664) represents the power output of the solar panel within this

condition, notably lower than the standard output due to partial shading.

The Faults discussed in this section is summorized by the Fig. 3.7. The faults and

corresponding indications from the image are given: PSC (Partial Shading Conditions)

(F5); OC (Open Circuit Fault) (F3); SC (Short Circuit Fault) (F2); L-L Fault (Line

to Line) (F1); L-G Fault (Line to Ground) (F4);

Figure 3.7: SPV Different Associated Faults.

Department of Electrical and Electronics Engineering, M.A.C.E 13
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3.4 Schematic Diagram of Proposed System

Solar panels serve as a crucial mechanism for converting sunlight into electricity, of-

fering a clean and renewable energy source. However, these panels are susceptible to

various faults that can significantly diminish their effectiveness. Therefore, it becomes

imperative to promptly and accurately identify, localize, and categorize these faults to

ensure optimal performance.

One viable method to accomplish this involves the implementation of an IoT-driven

Fault Monitoring and Detection System (FMDAS). This system works by gathering

data from the solar panel array and transmitting it to a cloud server. Here, a machine

learning algorithm, such as Support Vector Machine-Logistic Regression (SVM-LR),

processes the data to pinpoint the fault’s type and location. Additionally, the SVM-

LR classifier can generate a confusion matrix, providing insights into the precision and

accuracy of fault diagnosis.

The Flowchart (Fig. 3.8) visually represents the process of fault detection, local-

ization, and classification within a solar panel system. The flowchart outlines three

distinct steps: fault detection, localization, and classification. The illustration also

delineates the system’s components, including the solar panel array, the IoT-based

FMDAS, the SVM-LR classifier, and the confusion matrix. Altogether, the image

serves as a demonstration of how an automated and intelligent system can significantly

enhance the reliability and performance of solar panels.

Moreover, in the realm of fault detection in electronic circuits, specialized circuits

Figure 3.8: Schematic of the proposed SPV array fault detection, localization, classifi-
cation methodology.

exist to identify issues like short circuits, open circuits, or component failures. These

Department of Electrical and Electronics Engineering, M.A.C.E 14
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circuits are designed to gauge and indicate the fault’s type and location by modulating

the voltage output. This technology significantly contributes to the identification of

faults within electronic systems.

3.5 Conclusion

In conclusion, the incorporation of fault monitoring within solar PV systems emerges

as a critical necessity owing to the wide array of potential faults inherent to these sys-

tems. Ranging from line-to-line and line-to-ground faults to open and short circuits, as

well as the complex issues stemming from partial shading conditions, a comprehensive

approach to monitoring and detection becomes indispensable. The outlined schematic

diagram of the proposed system serves as a foundational guide, delineating a robust

monitoring framework meticulously designed to address these diverse fault scenarios.

By acknowledging the paramount importance of fault monitoring and comprehending

the spectrum of potential issues, this chapter lays the groundwork for the implemen-

tation of effective fault detection and mitigation strategies. Such strategies are pivotal

in safeguarding the optimal functionality and safety standards upheld by solar PV sys-

tems.
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CHAPTER 4

FAULT DETECTION

4.1 Introduction

Fault detection in solar PV (photovoltaic) arrays is a critical aspect of ensuring efficient

and reliable renewable energy generation. These systems are susceptible to various is-

sues, including module degradation, shading, soiling, electrical faults, and environmen-

tal factors, all of which can significantly impact their performance and overall energy

output. Detecting and diagnosing faults in a timely manner is essential to minimize

downtime and maintenance costs while maximizing energy yield.

4.2 Electronic Circuit Design

A BJT and Zener diode-based sensorless electronic circuit is designed to detect faulty

or bypassed SPV panels. Zener diode is used in a reverse-biased mode in the breakdown

region to maintain the voltage across it. In addition, it works as a shielding device that

prevents large reverse currents and sudden voltage spikes during sudden faulty events.

In the proposed detection circuit, an n-p-n-BJT is operated in saturation and cut-off

region. BJT with Zener diode acts as a constant current regulator.

Fig.4.1 shows the integration of the fault detection circuit with SPV panels. The

input of the BJT (base terminal of BJT) is connected to the bypass diode of the SPV

panel through the Zener diode. Two resistors R1, R2 and the output of the transistor

is connected to the biasing supply of 5 V through collector resistance R3. R1 and

R2 are arranged in a voltage divider path, whose midpoint is used as output for fault

detection. R2 is selected to limit the current flowing through the Zener diode. With

the power (PZ) rated 1 W and voltage (VZ) rated 5.1 V, the maximum Zener current

can be calculated as:
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Figure 4.1: Fault Detection Electronic Circuit.

IZ =
PZ

VZ

. (1)

A small value of R2 results in a large diode current, which increases the power con-

sumption of the FDEC. R2 value is chosen to be 39 kΩ based on various experimental

iterations. Taking diode forward voltage (VF ) as 1.2 V and Vpv,min as 5 V, the diode

current is deduced as

Id =
Vpv, min − VF

R2

(2)

Vpv,min is the minimum panel voltage under MPPT condition, and its value is as-

sumed to be 5 V. R1 is taken as 1.5 kΩ for better Zener voltage regulation. The

collector current of BJT is given as

IC = β × IB (3)

where, β is the current gain of BJT and IB is the base current. The value of Id is

derived to be 100 µA, which is small enough to avoid any loading effect of the sensing
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circuit. For a given value of Id, the β is estimated to be 0.1. With saturation voltage

between collector and emitter (VCE,sat) taken as 0.3 V and Vbias as 5 V, the collector

resistance R3 can be calculated as

R3 =
Vbias − VCE,sat

IC
. (4)

4.3 Working of the Interfaced Circuit

From Fig. 4.1, it can be observed that under normal conditions (NF), the bypass diode

of the associated SPV panel remains reverse biased, and the panel carries string current

IS through it. In this condition, BJT operates under saturation mode, and collector

voltage VC remains ‘LOW’. During any faulty event (LL, LG, OC, or PSC), the by-

pass diode becomes forward biased, and the string current IS starts flowing through

it, making zero forward current Id through the resistor R2 and thus forcing BJT to

work under the cut-off region. Due to this, collector current IC becomes zero, and the

collector voltage VC settles to biasing voltage and becomes ‘HIGH’.

4.4 Advantages of the Fault Detection Method

The advantages of the proposed fault detection method are summarized as follows.

• The FDEC, including all components, costs as low as INR 10 (0.15). Given the

compactness of the proposed circuit, a little space is required to interface it with

the SPV panel near the junction box.

• The proposed FDEC consumes only 0.01% of panel-rated power. As observed

from the experiments, it consumes 0.221 mA when connected to a V mpp = 18.1V

and Impp = 2.2A SPV panel.

• Zener diode works as a shielding device which can withstand high reverse current

and avoid voltage spikes, thus providing isolation to the sensing circuit.

• It is notable that the proposed FDEC works optimally in the temperature range

of −55◦C to +175◦C.

4.5 Conclusion

In wrapping up this chapter, the fault detection system represents a notable stride in

fortifying the reliability and safety of electronic circuit-dependent systems. The intri-
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cate exploration of electronic circuit design, along with a thorough understanding of

how the interfaced circuit operates, has illuminated a sturdy approach to fault detec-

tion. The highlighted advantages underscore the practicality and effectiveness of this

method, emphasizing its potential to significantly reduce risks stemming from faults

in various systems. Through this comprehensive coverage, the complexities of fault

detection and the importance of proactive measures in fortifying system resilience is

studied. Altogether, the outlined fault detection method stands as a promising avenue

for reinforcing the trustworthiness and operational robustness of electronic systems.
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CHAPTER 5

SIMULATION RESULTS

5.1 Introduction

The simulation results encapsulates a comprehensive exploration of fault detection, IoT

replication, and ML modeling within the context of system simulations. This delves into

the intricacies of replicating real-world scenarios in simulated environments, showcasing

how fault detection electronic circuits (FDEC) function in detecting anomalies within

Solar PV panels. Furthermore, this elucidates the challenges of simulating IoT-based

systems using software platforms, outlining the process of emulating hardware func-

tionalities through Python simulations. Additionally, this section navigates through

the intricacies of ML modeling for fault classification, emphasizing the significance of

dataset acquisition, preprocessing, and the evaluation of various ML algorithms to as-

certain their efficiency in categorizing distinct fault types.

5.2 Implementation of FDEC Circuit in LTspice

The FDEC, or Fault Detection Electronic Circuit, serves as a crucial component con-

nected to each Solar PV panel within an array. Its primary function is to generate a

distinct output voltage based on the status of the panel. In the event of a faulty circuit,

the FDEC yields an output voltage of 5 volts, whereas a healthy panel produces an

output voltage of 0.1 volt.

The simulation process for the FDEC commenced by initially modeling a 300W

Solar PV module within the LTspice environment. This module was then linked to

the FDEC for comprehensive analysis of the circuit’s behavior. Deliberate faults such

as open circuit (OC), short circuit (SC), Line-to-Line (LL), and Line-to-Ground (LG)

were intentionally induced into the Solar PV module. Subsequently, the terminal win-
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Figure 5.1: FDEC implemented on a series-parallel configuration of an SPV Array.

dow of LTspice displayed the expected output of 5 volts for the faulty conditions.

Figure 5.2: FDEC Simulation Result for Healthy, Faulty Panel.

The simulation effectively showcased how a series-parallel setup responds to faults,

as illustrated in the accompanying figure. This method elucidated the manner in which

the FDEC was simulated and its response to introduced faults within the system.

5.3 Implementation of IoT based FMDAS Technique

The implementation of an IoT-based Fault Monitoring and Data Acquisition System

(FMDAS) involves replicating the behavior of hardware using a simulated platform,
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Figure 5.3: Data Collected against the Time from each FDEC of the SPV module.

primarily due to the limitations in simulating IoT in open-source software. To em-

ulate the functionalities of IoT hardware, Python serves as the chosen platform for

this simulation. The hardware aspect involves the utilization of an ESP-32 for data

transmission, where real-time data is compared against a predetermined threshold tem-

perature value. If the real-time data surpasses this threshold, indicating a faulty value,

a message is generated either for display or transmission to a server.

Figure 5.4: Python Program Flowchart.

However, as simulating IoT directly in open-source software is unfeasible, an alter-

native approach is adopted. Initially, data collection is executed by running a Solar

PV (SPV) model within the MATLAB environment. The SPV model, simulated in

SIMULINK, generates data crucial for replicating IoT behavior using Python. This

data collection involves noting down information from nine SPV panels at intervals of

25 seconds, resulting in the acquisition of 1000 data points starting from 9:00 AM. The

output data obtained represents the status of each SPV module as generated by the

Fault Detection Electronic Circuit (FDEC).

Subsequently, a Python code is employed for the analysis of the acquired data. This
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Figure 5.5: Terminal window upon running the python code.

code is programmed to detect faults within the SPV panels based on the collected data.

When a fault is detected within a particular SPV panel, the Python code triggers a

notification on a local server, indicating the occurrence of a fault at the specific time.

This process mirrors the functionality of an IoT-based system, where the hardware

would communicate fault occurrences to a central server or display.

Figure 5.6: Server window showing the status of each SPV module.

Through this simulated approach, the FMDAS, responsible for monitoring faults

and acquiring data, successfully replicates the behaviors of an IoT hardware platform

using software simulation. The Python-based system mimics the threshold-based com-

parison and fault detection akin to an actual IoT hardware setup, demonstrating fault

monitoring and data acquisition functionalities in a simulated environment.

5.4 Data-Set Creation For ML Modelling

In the domain of ML modeling for fault classification, the initial steps involve detecting

and categorizing faults, setting the groundwork for the subsequent task: fault classi-

fication. Before training a classification model, a dataset is essential. To acquire this
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dataset, researchers often explore platforms like Kaggle, IEEE, or other repositories

containing relevant data. In cases where data isn’t readily available, an alternative

involves generating data using tools like the SIMULINK model. Running simulations

within SIMULINK systematically generates data, with the data quantity increasing

with longer model runs. These simulations deliberately encompass various fault sce-

narios such as short circuit (SC), open circuit (OC), Line to Line (LL), Line to Ground

(LG), Partial Shading Condition (PSC), and more. Each occurrence of a fault gener-

ates corresponding data points, eventually stored in a CSV file for further analysis.

Figure 5.7: MATLAB SPV Array Simulation.

Preprocessing is a critical phase in preparing collected data for effective utilization

in machine learning models. Cleaning the dataset involves identifying and rectifying

any inconsistencies, errors, or outliers present in the data. This step ensures that the

dataset is free from irregularities that could potentially distort the model’s learning

process. For instance, it might involve dealing with duplicate entries, correcting for-

matting issues, or resolving discrepancies in data entries that could mislead the model

during training.

Handling missing values is another vital aspect of preprocessing. Datasets often con-

tain missing or incomplete information, which can hinder the model’s performance.

Strategies like imputation (filling missing values with reasonable approximations) or

removing rows or columns with excessive missing data are commonly employed to ad-

dress this issue. Ensuring that the dataset is complete and consistent is crucial for

training accurate and reliable models.

Scaling the data for normalization purposes involves bringing different features to
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Figure 5.8: Data Collection from Simulink platform.

a similar scale. In many machine learning algorithms, features with larger numerical

scales might dominate the learning process, leading to biased model outcomes. Nor-

malization techniques like scaling features to a similar range (e.g., between 0 and 1) or

standardizing them (transforming to have a mean of 0 and a standard deviation of 1)

help prevent such biases. This step ensures that each feature contributes proportion-

ally to the model’s learning without being influenced by its original scale. Ultimately,

the goal of preprocessing is to refine the dataset, making it more conducive for ma-

chine learning algorithms to learn patterns and relationships within the data accurately.

The ML training process is integral and results in a confusion matrix, acting as a

metric for the model’s performance. Initially, the dataset is partitioned into segments,

typically divided into training and testing sets, by the ML algorithms themselves. This

partitioning is crucial for assessing the model’s efficiency during the training process,

allowing validation and evaluation of its performance on unseen data.

The classification model’s efficacy is determined through this process, where the dataset

undergoes training, validation, and testing phases. It’s a critical stage in ensuring the

model’s ability to accurately classify faults based on the patterns and features extracted

from the dataset.

5.5 Machine Learning and Model Comparison

Detecting faulty panels involves using machine learning (ML) and deep learning (DL)

models. Initially, it’s crucial to gather data on panel characteristics and potential faults.

After collecting the data, these models are utilized to classify functional and faulty pan-

els by analyzing patterns and features within the acquired information. Metrics like
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performance measures and confusion matrices evaluate how accurately these models

identify defective units. The choice between ML and DL models depends on factors

such as data quality and quantity. Models can range from traditional ML algorithms

like Random Forests or Support Vector Machines to more complex DL architectures

like Convolutional Neural Networks or Recurrent Neural Networks. The effectiveness

of these models depends on data intricacies and the desired accuracy for fault detection.

Figure 5.9: Flowchart of the ML modelling.

Algorithm 1: Importing Data from Excel using Pandas

1: Input: Excel file ’pvdataset.xlsx’
2: Output: DataFrame ’imported data’
3: function ImportExcelData
4: Import the Pandas library as ’pd’
5: Define excel file path as the path to the Excel file ’pvdataset.xlsx’
6: Read the Excel file specified by excel file path into a DataFrame named

’imported data’ using pd.read excel()
7: Print the first few rows of ’imported data’ using the print() function
8: end function

When plotting histograms of voltage and current data from a DataFrame, it’s essen-

tial to understand their respective distributions. Histograms are effective visualizations

that showcase the frequency distribution of values within a dataset.

The histogram of voltage provides insight into the distribution of voltage values cap-

tured in the dataset. It illustrates the spread and frequency of different voltage levels,

showcasing how often each voltage value occurs within the dataset. Understanding the

voltage distribution is crucial in various fields, such as electrical engineering or physics,

as it helps identify common voltage ranges or outliers.
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Figure 5.10: Data Set importing.

Similarly, the histogram of current displays the frequency distribution of current

values present in the dataset. It reveals patterns in current levels, highlighting the oc-

currence and variability of different current values. Analyzing the current distribution

aids in comprehending the typical current behavior or identifying unusual fluctuations

within the dataset.

In combination, these histograms offer a comprehensive view of the voltage and

current characteristics within the dataset, enabling insights into their respective distri-

butions, central tendencies, and potential outliers or irregularities. These visualizations

serve as foundational tools for understanding the underlying patterns and behaviors of

voltage and current data.

The utilization of scatter plots holds significant relevance within the context of vi-

sualizing relationships between voltage and current concerning different fault types in

a power system dataset. Scatter plots provide a powerful graphical representation, en-

abling the simultaneous display of voltage and current values for distinct fault types.

By visualizing these relationships, patterns or trends in how voltage and current inter-

act in various fault scenarios become discernible. This graphical insight aids engineers

and analysts in identifying potential correlations or distinctions between fault types

based on the observed voltage-current distributions, thereby facilitating a deeper un-

derstanding of the system behavior under different fault conditions.

Support Vector Machine - Logistic Regression (SVM-LR) blends the strengths of

SVM’s robustness in handling complex data distributions with Logistic Regression’s

simplicity and interpretability. It combines the margin-maximizing nature of SVMs

with LR’s probabilistic framework, yielding a hybrid model that balances non-linear

decision boundaries while providing probabilistic predictions. SVM-LR efficiently han-
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Algorithm 2: Plotting Histograms of Voltage and Current

Require: imported data - DataFrame containing voltage and current data
1: Import the Matplotlib library as ’plt’
2: Plot a histogram of the ’Voltage’ column from the imported data using

plt.hist()

3: Set the number of bins to 20
4: Set the color of the bars to blue with an alpha value of 0.7 for transparency
5: Set the label for the x-axis as ’Voltage’ using plt.xlabel()

6: Set the label for the y-axis as ’Frequency’ using plt.ylabel()

7: Set the title of the histogram as ’Histogram of Voltage’ using plt.title()

8: Display the histogram using plt.show()

9: Plot a histogram of the ’Current’ column from the imported data using
plt.hist()

10: Set the number of bins to 20
11: Set the color of the bars to blue with an alpha value of 0.7 for transparency
12: Set the label for the x-axis as ’Current’ using plt.xlabel()

13: Set the label for the y-axis as ’Frequency’ using plt.ylabel()

14: Set the title of the histogram as ’Histogram of Current’ using plt.title()

15: Display the histogram using plt.show()

Algorithm 3: Scatter Plot of Voltage vs. Current by Fault Type

Require: imported data - DataFrame containing voltage, current, and fault type
data

Ensure: Scatter plot showing voltage vs. current, colored by fault type
1: Import the Seaborn library as ’sns’
2: Import the Matplotlib library as ’plt’
3: Set the style for Seaborn as ’whitegrid’ using sns.set()

4: Create a figure with a size of 10x10 using plt.figure(figsize=(10, 10))

5: Create a scatter plot of ’Voltage’ vs. ’Current’ with different colors for each
’FaultType’

6: Use sns.scatterplot() and specify x=’Voltage’, y=’Current’,

hue=’FaultType’, data=imported data, palette=’Set2’, alpha=0.9

7: Set the label for the x-axis as ’Voltage’ using plt.xlabel()

8: Set the label for the y-axis as ’Current’ using plt.ylabel()

9: Set the title of the plot as ’Voltage vs. Current by Fault Type’ using plt.title()

10: Display the legend with the title ’Fault Type’ at the upper center using
plt.legend(title=’Fault Type’, loc=’upper center’)

11: Display the plot using plt.show()
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Figure 5.11: Histogram of the Voltage and Current.

Figure 5.12: Voltage vs Current by plot type
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dles both linearly separable and non-linearly separable data by incorporating the kernel

trick for non-linear transformations, ensuring adaptability to diverse datasets. This fu-

sion empowers practitioners with a versatile tool that maintains SVM’s efficacy in

handling complex data while leveraging LR’s interpretability, making it valuable in

various classification scenarios.

Algorithm 4: Training SVM Model for FaultType Prediction and Confusion
Matrix Visualization
Require: Dataset ’pvdataset.xlsx’
Ensure: Trained SVM model, Evaluation metrics (Accuracy, Classification Report),

Heatmap visualization of the confusion matrix
1: Import necessary libraries: pandas, train test split, SVC, accuracy score,

classification report, StandardScaler
2: Load the dataset ’pvdataset.xlsx’ into a DataFrame ’data’ using pd.read excel()
3: Separate the features (X) and the target variable (y)
4: X contains ’Voltage’ and ’Current’ columns
5: y contains the ’FaultType’ column
6: Split the dataset into training and testing sets using train test split()
7: Set aside 20
8: Standardize the features using StandardScaler()
9: Scale the training and testing features separately
10: Train an SVM model using SVC()
11: Use a linear kernel and set the regularization parameter C=1 (adjustable)
12: Make predictions on the test set using svm model.predict()
13: Evaluate the model’s performance
14: Calculate accuracy using accuracy score() between y test and y pred
15: Generate a classification report using classification report()
16: Display the accuracy and classification report
17: Print the accuracy score rounded to two decimal places
18: Print the classification report showing precision, recall, and F1-score for each

class
19: Create a new figure with a size of 8x6 using plt.figure(figsize=(8, 6))
20: Generate a heatmap of the confusion matrix using sns.heatmap()
21: Use the ’conf matrix’ as input data
22: Enable annotations on the heatmap by setting annot=True
23: Set the format of the annotations to ’d’ (decimal)
24: Use the ’Blues’ colormap to represent the data
25: Label the x-axis with ’Predicted’ using plt.xlabel()
26: Label the y-axis with ’Actual’ using plt.ylabel()
27: Set the title of the heatmap as ’Confusion Matrix’ using plt.title()
28: Display the heatmap using plt.show()

The decision function scores in Support Vector Machines (SVM) are numerical val-

ues that indicate the distance of data points from the decision boundary established

by the SVM algorithm. In binary classification, these scores help classify data points:

positive scores suggest one class, while negative scores suggest the other. Larger abso-
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Figure 5.13: Report of Support Vector Machine-Logistic Regression.

Figure 5.14: Decision Function Scores and Loss-Like Quantity of SVM-LR.

lute values of these scores typically denote greater confidence in the classification.

The ”loss-like” quantity, calculated using hinge-loss formula 1−(decision function scores×
true labels), serves as a measure of how well the SVM model is performing. It signifies

the margin or distance of a data point from the decision boundary. Lower values of

this loss metric indicate that the data points are correctly classified or are closer to

the decision boundary, implying a more confident and accurate model. The hinge loss

penalizes misclassifications, contributing to the optimization process of the SVM algo-

rithm by aiming to minimize this loss to achieve better separability and classification

accuracy.
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Algorithm 5: Visualizing Decision Function Scores and Loss-Like Quantity

Require: Dataset ’pvdataset.xlsx’
Ensure: Visualization of decision function scores and loss-like quantity
1: Import necessary libraries: pandas, train test split, SVC, StandardScaler, numpy,

matplotlib
2: Load the dataset ’pvdataset.xlsx’ into a DataFrame ’data’ using pd.read excel()
3: Separate the features (X) and the target variable (y)
4: X contains ’Voltage’ and ’Current’ columns
5: y is mapped to suitable labels for SVM (-1 for fault types other than

’Normal’, 1 for ’Normal’)
6: Split the dataset into training and testing sets using train test split()
7: Set aside 20
8: Standardize the features using StandardScaler()
9: Scale the training and testing features separately
10: Train an SVM model using SVC()
11: Use a linear kernel, set the regularization parameter C=1, enable probability

estimates
12: Obtain decision function scores on the test set using

svm model.decision function()
13: Calculate loss-like quantity using hinge loss:

loss values = 1− decision function scores× y test
14: Plot the decision function scores and loss-like quantity
15: Create a figure with a size of 12x6 using plt.figure(figsize=(12, 6))
16: Subplot 1: Scatter plot of decision function scores
17: Subplot 2: Line plot of loss-like quantity
18: Set appropriate labels and titles for both plots
19: Display the plots using plt.tight layout() and plt.show()
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Figure 5.15: Report of Random Forest Classifier.

The Random Forest Classifier is a machine learning method designed for classifica-

tion tasks, relying on an ensemble of decision trees. During training, it builds multiple

trees using different subsets of both features and the training data. This diversity

among trees helps enhance the model’s reliability.

When it comes to making predictions, the Random Forest combines the outputs of

each individual tree to determine the final prediction. For classification, it selects the

class that gathers the most votes from the trees, while for regression tasks, it averages

the outputs. By leveraging this collective decision-making approach, Random Forests

often yield better accuracy and resilience against overfitting, allowing them to gener-

alize well to new, unseen data. Another advantage lies in their ability to assess feature

importance, making them widely applicable across various domains, including finance,

healthcare, natural language processing, and image recognition.

The Decision Tree Classifier is a machine learning method used for classification

and regression tasks. It works by segmenting the feature space into distinct sections,

making sequential decisions based on feature values to ultimately make a prediction.

Each node in the tree signifies a decision based on a particular feature, and each leaf

node represents the final prediction or class label.

This classifier functions by repeatedly dividing the dataset into subsets based on fea-

tures that best separate the data according to specific criteria (such as Gini impurity or

information gain). It’s recognized for its tree-like structure, which is easy to interpret,

enabling a clear understanding of how decisions are made. However, if not properly

controlled, Decision Trees can overfit the data, particularly when creating deep trees
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Algorithm 6: Training and Evaluating Random Forest Classifier

Require: Dataset ’pvdataset.xlsx’
Ensure: Classifier performance metrics (Accuracy, Confusion Matrix, Classification

Report), Visualization of Confusion Matrix
1: Import necessary libraries: pandas, matplotlib.pyplot, seaborn, train test split,

RandomForestClassifier, accuracy score, classification report, confusion matrix
2: Load the synthetic dataset ’pvdataset.xlsx’ into a DataFrame ’synthetic data’

using pd.read excel()
3: Separate the features (X) and the target variable (y)
4: X contains ’Voltage’ and ’Current’ columns
5: y contains the ’FaultType’ column
6: Split the dataset into training and testing sets using train test split()
7: Set aside 20
8: Initialize the Random Forest classifier with n estimators=100 and

random state=42
9: Train the classifier using rf classifier.fit()
10: Make predictions on the test set using rf classifier.predict()
11: Evaluate the classifier’s performance
12: Calculate accuracy using accuracy score() between y test and y pred
13: Generate a confusion matrix using confusion matrix()
14: Generate a classification report using classification report()
15: Display the results
16: Print the accuracy score rounded to two decimal places
17: Print the confusion matrix
18: Print the classification report showing precision, recall, and F1-score for each

class
19: Visualize the confusion matrix using seaborn
20: Create a figure with a size of 8x6 using plt.figure(figsize=(8, 6))
21: Generate a heatmap of the confusion matrix using sns.heatmap()
22: Show the true and predicted labels on x and y axes, respectively
23: Display the heatmap using plt.show()
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that might capture noise in the dataset. Methods like pruning or employing ensemble

techniques such as Random Forests help address these concerns, enhancing the classi-

fier’s ability to generalize and handle diverse datasets.

Figure 5.16: Report of Decision Tree Classifier.

Figure 5.17: Report of Voting Classifier.

The Voting Classifier is an ensemble learning technique that combines multiple in-

dividual machine learning models to generate predictions. It aggregates predictions

from various base models, which can be classifiers or regressors, and outputs the most

common prediction for classification tasks or the average prediction for regression tasks.

This approach is founded on the idea that combining diverse models often yields more

accurate and robust predictions compared to relying on a single model.
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Algorithm 7: Training and Evaluating Decision Tree Classifier

Require: Dataset ’pvdataset.xlsx’
Ensure: Classifier performance metrics (Accuracy, Confusion Matrix, Classification

Report), Visualization of Confusion Matrix
1: Import necessary libraries: pandas, seaborn, matplotlib.pyplot, train test split,

DecisionTreeClassifier, accuracy score, classification report, confusion matrix
2: Load the synthetic dataset ’pvdataset.xlsx’ into a DataFrame ’dataset’ using

pd.read excel()
3: Separate the features (X) and the target variable (y)
4: X contains ’Voltage’ and ’Current’ columns
5: y contains the ’FaultType’ column
6: Split the dataset into training and testing sets using train test split()
7: Set aside 20
8: Initialize the Decision Tree classifier with default parameters and

random state=42
9: Train the classifier on the training set using clf.fit()
10: Make predictions on the test set using clf.predict()
11: Evaluate the classifier’s performance
12: Calculate accuracy using accuracy score() between y test and y pred
13: Generate a confusion matrix using confusion matrix()
14: Generate a classification report using classification report()
15: Display the results
16: Print the accuracy score
17: Print the confusion matrix
18: Print the classification report showing precision, recall, and F1-score for each

class
19: Visualize the confusion matrix using seaborn and matplotlib
20: Create a figure with a size of 8x6 using plt.figure(figsize=(8, 6))
21: Generate a heatmap of the confusion matrix using sns.heatmap()
22: Show the true and predicted labels on x and y axes, respectively
23: Display the heatmap using plt.show()
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There exist two primary types of Voting Classifiers: hard and soft voting. In hard

voting, the final prediction is determined by a majority vote among the individual

models. In contrast, soft voting considers the confidence or probability estimates from

each model, averaging them to derive the final prediction. The Voting Classifier is

effective when the base models exhibit different strengths and weaknesses or when they

are trained on different subsets of data. This diversity allows for a more comprehensive

analysis of the dataset, potentially leading to improved generalization when making

predictions on new, unseen data.

Algorithm 8: Training and Evaluating Voting Classifier

Require: Dataset ’pvdataset.xlsx’
Ensure: Classifier performance metrics (Accuracy, Classification Report),

Visualization of Confusion Matrix
1: Import necessary libraries: pandas, sklearn.model selection, sklearn.ensemble,

sklearn.tree, sklearn.svm, sklearn.metrics, seaborn, matplotlib.pyplot
2: Load the synthetic dataset ’pvdataset.xlsx’ into a DataFrame ’synthetic data’

using pd.read excel()
3: Convert ’FaultType’ to numerical labels using LabelEncoder()
4: Separate the features (X) and the target variable (y)
5: X contains ’Voltage’ and ’Current’ columns
6: y contains the numerical labels for ’FaultType’
7: Split the data into training and testing sets using train test split()
8: Set aside 20
9: Define the classifiers: RandomForestClassifier, DecisionTreeClassifier, SVC
10: Create a VotingClassifier using RandomForestClassifier, DecisionTreeClassifier,

SVC, with soft voting
11: Train the VotingClassifier using voting classifier.fit()
12: Make predictions on the test set using voting classifier.predict()
13: Evaluate the classifier’s performance
14: Calculate accuracy using accuracy score() between y test and y pred
15: Generate a classification report using classification report()
16: Display the results
17: Print the accuracy score rounded to two decimal places
18: Print the classification report showing precision, recall, and F1-score for each

class
19: Visualize the confusion matrix using seaborn and matplotlib
20: Create a figure with a size of 8x6 using plt.figure(figsize=(8, 6))
21: Generate a heatmap of the confusion matrix using sns.heatmap()
22: Show the true and predicted labels on x and y axes, respectively
23: Display the heatmap using plt.show()

Presently, several ML algorithms, such as Random Forest Classifier, Decision Tree,

and SVM-LR, are being implemented and evaluated. The objective is to compare their

efficiencies in handling different fault scenarios. Each fault type may exhibit varied
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results when subjected to different ML algorithms. Therefore, the ongoing assessment

focuses on determining the most suitable ML model for each specific fault category,

identifying the algorithm that yields the most efficient and accurate fault classification

results. This comparative analysis aids in selecting the optimal ML approach tailored

to the distinctive characteristics of each fault type.

The assessment of ML algorithms for fault classification heavily relies on performance

metrics to pinpoint the best-suited model for each fault category. Evaluating precision,

recall, accuracy, and the F1 score for each ML algorithm used on the dataset provides

critical insights. These metrics shed light on how effectively the model identifies faults

while minimizing the occurrence of false positives and negatives.

Additionally, the selection of an ML algorithm factors in computational complexity

and scalability essential for real-time fault classification. While some algorithms may

boast higher accuracy rates, they could also be computationally intensive, making

them less practical for immediate deployment in real-world scenarios. Striking a bal-

ance between accuracy and computational efficiency is pivotal in choosing the most

viable model for integration into fault monitoring systems. Hence, beyond comparing

efficiency across fault types, the assessment considers the computational demands and

scalability of ML algorithms, especially concerning real-time applications within fault

detection frameworks.

5.6 Conclusion

Concluding this segment on simulation outcomes, the FDEC (Fault Detection), IoT-

based FMDAS (Fault Monitoring and Detection System), and ML (Machine Learning)

methodologies showcased substantial progress in fault analysis within electronic sys-

tems. Their implementation signifies a leap forward in enabling robust fault detection,

localization, and classification. The integration of these methods fosters a holistic ap-

proach to fault management, leveraging data-driven insights for predictive analysis and

model comparison. The creation of dedicated datasets for machine learning modeling

serves as a pivotal foundation for enhancing fault prediction accuracy and refining clas-

sification models. The combined capabilities of these techniques highlight a promising

trajectory toward bolstering fault management strategies, thereby fortifying system

reliability through proactive fault detection and preemptive mitigation measures.
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CHAPTER 6

CONCLUSION

In the exploration of fault detection and system analysis, a spectrum of tools and plat-

forms has been strategically employed for distinct purposes. The Fault Detection Elec-

tronic Circuit (FDEC) was meticulously crafted and executed within LTspice, showcas-

ing its proficiency in identifying faults within Solar PV panels. MATLAB/SIMULINK

emerged as a cornerstone tool, serving a dual role: initially for data collection from the

Solar PV modules and subsequently for an in-depth study of fault characteristics. The

insights gleaned from MATLAB/SIMULINK fueled the understanding of fault behav-

iors, crucial for subsequent analysis. Further advancing the analytical landscape, the

Fault Monitoring and Data Acquisition System (FMDAS) was crafted using Python,

leveraging the collected data to emulate IoT behaviors. This technique facilitated the

real-time relay of Solar PV module status to a dedicated server, enabling continuous and

remote monitoring. The realm of fault classification delved into the realm of machine

learning, employing ML algorithms, including Support Vector Machines (SVM). These

algorithms were instrumental in classifying faults, with a detailed comparative study

performed to ascertain their respective efficiencies. This integration of ML algorithms

into fault classification underscored their relevance and efficacy within this multifaceted

exploration of fault detection and system analysis within Solar PV systems. Each tool

and technique, from fault identification and data collection to fault classification and

comparative algorithmic analysis, played an integral role in establishing a comprehen-

sive framework for understanding, detecting, and managing faults in Solar PV systems.
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